beta-Hydroxybutyrate inhibits myocardial fatty acid oxidation in vivo independent of changes in malonyl-CoA content.
نویسندگان
چکیده
This study tested the hypothesis that an acute infusion of beta-hydroxybutyrate inhibits myocardial fatty acid uptake and oxidation in vivo. Anesthetized pigs were untreated (n = 6) or treated with an intravenous infusion of fat emulsion (n = 7) to elevate plasma free fatty acid levels. A third group received fat emulsion plus an intravenous infusion of beta-hydroxybutyrate (25 micromol.kg-1.min-1; n = 7) for 60 min. All animals received a continuous infusion of [3H]palmitate, and myocardial fatty acid oxidation was measured from the cardiac production of 3H2O. Plasma free fatty acid concentrations were elevated in the fat emulsion group (0.77 +/- 0.11 mM) compared with the untreated group (0.15 +/- 0.03 mM), which resulted in greater myocardial free fatty acid oxidation. In contrast, the group receiving beta-hydroxybutyrate in addition to fat emulsion had elevated beta-hydroxybutyrate concentration (0.87 +/- 0.11 vs. 0.04 +/- 0.01 mM), but suppressed fatty acid oxidation (0.053 +/- 0.013 micromol.g-1.min-1) (P < 0.05) compared with the fat emulsion group (0.116 +/- 0.029 micromol.g-1.min-1). There were no differences among the three groups in the tissue content for malonyl-CoA, acetyl-CoA, or free CoA or the activity of acetyl-CoA carboxylase; thus the inhibition of fatty acid oxidation by elevated beta-hydroxybutyrate did not appear to be due to malonyl-CoA inhibition of carnitine palmitoyl transferase-I or to an increase in the acetyl-CoA-to-free CoA ratio. In conclusion, fatty acid uptake and oxidation is blocked by an infusion of beta-hydroxybutyrate; this effect was not due to elevated myocardial malonyl-CoA content.
منابع مشابه
Malonyl-CoA decarboxylase inhibition suppresses fatty acid oxidation and reduces lactate production during demand-induced ischemia.
The rate of cardiac fatty acid oxidation is regulated by the activity of carnitine palmitoyltransferase-I (CPT-I), which is inhibited by malonyl-CoA. We tested the hypothesis that the activity of the enzyme responsible for malonyl-CoA degradation, malonyl-CoA decarboxlyase (MCD), regulates myocardial malonyl-CoA content and the rate of fatty acid oxidation during demand-induced ischemia in vivo...
متن کاملRegulation of myocardial fatty acid oxidation by substrate supply.
We tested the hypothesis that myocardial substrate supply regulates fatty acid oxidation independent of changes in acetyl-CoA carboxylase (ACC) and 5'-AMP-activated protein kinase (AMPK) activities. Fatty acid oxidation was measured in isolated working rat hearts exposed to different concentrations of exogenous long-chain (0.4 or 1.2 mM palmitate) or medium-chain (0.6 or 2.4 mM octanoate) fatty...
متن کاملProbing peroxisomal beta-oxidation and the labelling of acetyl-CoA proxies with [1-(13C)]octanoate and [3-(13C)]octanoate in the perfused rat liver.
We reported previously that a substantial fraction of the acetyl groups used to synthesize malonyl-CoA in rat heart is derived from peroxisomal beta-oxidation of long-chain and very-long-chain fatty acids. This conclusion was based on the interpretation of the 13C-labelling ratio (malonyl-CoA)/(acetyl moiety of citrate) measured in the presence of substrates that label acetyl-CoA in mitochondri...
متن کاملThe effects of ginsenoside Rb1 on fatty acid β-oxidation, mediated by AMPK, in the failing heart
Objective(s): This study intended to investigate the effects of Ginsenoside-Rbl (Gs-Rbl) on fatty acid β-oxidation (FAO) in rat failing heart and to identify potential mechanisms of Gs-Rbl improving heart failure (HF) by FAO pathway dependent on AMP-activated protein kinase (AMPK). Materials and Methods: Rats with chronic HF, induced by adriamycin (Adr), were randomly grouped into 7 groups. Gs-...
متن کاملMalonyl-CoA and the regulation of fatty acid oxidation in soleus muscle.
1. Rat soleus strips were incubated with 5 mM glucose, after which tissue metabolites were measured. Alternatively, muscle strips were incubated with 5 mM glucose and 0.2 mM palmitate, and the formation of 14CO2 from exogenous palmitate or from fatty acids released from prelabelled glycerolipids was measured. 2. Etomoxir, which inhibits the mitochondrial overt form of carnitine palmitoyltransfe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 285 4 شماره
صفحات -
تاریخ انتشار 2003